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Abstract: Fractals and multifractals are well-known trademarks of nonlinear dynamics and classical 

chaos. The goal of this work is to tentatively uncover the unforeseen path from multifractals and 

selfsimilarity to the framework of effective field theory (EFT). An intriguing finding is that the partition 

function of multifractal geometry includes a signature analogous to that of gravitational interaction. Our 

results also suggest that multifractal geometry may offer insights into the non-renormalizable interactions 

presumed to develop beyond the Standard Model scale. 
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1. Introduction 

There is a vast panorama of objects and processes in Nature that exhibit self-similarity, 

either as “shape invariance” under scaling operations or invariance under scaling of 

variables defining a system. Examples include sets of fractional dimensions (fractals and 

multifractals), Levy flights and random walks, fluid turbulence, the geometry of quantum 

mechanical paths, anomalous diffusion, non-differentiable functions and fractional 

operators, percolation and crystal growth, self-organized criticality and so on. As defining 

property of nonlinear dynamics, self-similarity has emerged as common denominator of 
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many theoretical frameworks, from the mathematics of chaos and complexity to critical 

behavior and the Renormalization Group approach to Quantum Field Theory (QFT) [8].   

The concepts of continuous dimension and entropy play a pivotal role in the analysis of 

selfsimilarity. Unlike simple fractals, multifractals are selfsimilar structures endowed 

with multiple dimensions and are naturally fit to describe the long-run evolution of 

chaotic phenomena.  In particular,  

 Nonlinear dynamical systems and iterated maps can generate multifractals by 

fragmentation of the phase space. The crux of this observation is that both 

statistical behavior and fragmentation of the phase-space follow from strictly 

deterministic equations of motion, with no apriori assumptions about randomness 

and probability distributions [4]. 

 The long-term chaotic orbits of many dynamical systems are confined to invariant 

sets called strange attractors, whose characterization requires the language of 

multifractal geometry.  

 Fully developed chaos is, in fact, a faithful replica of equilibrium statistical 

mechanics. It can be shown that dynamics on a strange attractor displays 

thermodynamic-like behavior consistent with ergodicity, fluctuation-dissipation 

theorem, and invariant probability distributions [1-2, 4-5, 8]. 

The goal of this work is to tentatively uncover the step-by-step route from multifractals 

and selfsimilarity to effective field theory (EFT. The reader is cautioned upfront that our 

approach is far from being either fully rigorous and/or formally complete and that many 

relevant details are left out for concision and clarity. In a nutshell, our sole motivation is 
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to initiate a new research avenue and to lay the groundwork for subsequent modeling 

efforts. 

The paper is organized in the following way: next couple of sections present the working 

assumptions of the paper and a brief pedagogical introduction to nonlinear maps and 

Lyapunov stability. Section 4 elaborates on the correspondence between the partition 

function of multifractal geometry and its counterpart of classical Thermodynamics. 

Drawing from the link between Lyapunov exponents and the Gaussian curvature of 

geodesic trajectories, section 5 argues that the partition function of multifractal geometry 

includes a signature analogous to that of gravitational interaction. Section 6 suggests that 

multifractal geometry may offer insights into the hypothetical non-renormalizable 

interactions beyond the Standard Model (SM) scale. Concluding remarks are outlined in 

the last section. 

As pointed out earlier, further analysis and independent evaluation are needed to refute, 

confirm, or develop these lines of reasoning and determine their long-term viability.  

2. Working assumptions 

A1) We confine the discussion to low-dimensional nonlinear systems exhibiting 

dissipative behavior. Typical examples of such systems include non-invertible one-

dimensional maps and non-conservative two-dimensional maps. 

The rationale for choosing low-dimensional systems as starting point echoes the 

center manifold theory, where a multivariable system of differential equations is 

shown to reduce in the long run to a lower dimensional system of universal equations 

dependent on a single emerging variable [19-20]. On the same note, we recall that the 
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dissipative behavior of many nonlinear systems falls in line with non-equilibrium 

dynamics of high energy observation scales [4-5, 17]. 

A2) Section 3) focuses exclusively on Lyapunov stability applied to trajectories 

having a limited extent in spacetime or phase space. 

A3) Section 5) focuses exclusively on weak and slowly varying gravitational fields, as 

typically described in introductory textbook on General Relativity.    

3. Nonlinear maps and Lyapunov exponents  

A hallmark feature of chaotic dynamics is sensitivity to initial conditions, which leads to 

the exponential instability of nearby phase-space trajectories. The separation between 

adjacent trajectories grows exponentially in time according to 

 ( )x t ~ (0) exp( )x t   (1) 

for 0  . To fix ideas, consider a one-dimensional nonlinear system whose time 

evolution is described by the iterated map 

 1 ( )n nz f z   (2) 

where the iterates nz  are confined to a bounded interval  min max,z z  as n. The phase 

space of (2) is defined by the axis containing the set of z  values. Let 0 1 2 ...z z z  

represent a trajectory starting from the initial point 0z . Linearizing the map about this 

trajectory for a nearby initial point 0 0z z  implies that 
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 1 1 1 1 1( ) ( ) '( ) ...n n n n n n nz z f z z f z f z z             (3) 

By these arguments, the equation describing the linearized error propagation reads [4] 

 1 1'( )n n nz f z z    (4) 

Labelling the initial separation of two nearby trajectories by 
0z , the closed form solution 

of (4) can be presented as 

 
1

0
0

'( )
n

n i
i

z f z z 



   (5) 

where ( )

0( )n

nz f z  is the thn  iterate of (2) starting from 0z . Therefore, 

 ( ) '

0 0( )n

nz z f z   (6) 

By (1), (6) leads to the following definition of the Lyapunov exponent 

 ( ) ' ( ) '

0 0

1
( ) exp( ) ln ( )n nf z n f z

n
     (7a) 

 0 exp( )nz z n    (7b) 

On the other hand, by (5), one can write 
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Comparative inspection of (6)–(8) in the limit 1n   yields a consolidated expression of 

the maximal Lyapunov exponent in the form 
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Similar arguments apply to the Lyapunov exponents of higher dimensional maps. 

Consider, for example, a two-dimensional map given by 

 1 ( , )n n nx f x y  ;  1 ( , )n n ny g x y   (10) 

It can be shown that an area element na  of the phase space defined by 1( , )n nx x and 

1( , )n ny y  evolves as 

 1 2 0exp[ ( )]na n a      (11) 

The condition 1 2 0    specifies regular motion in phase space and an area preserving 

(conservative) map, whereas 1 2 0    describes dissipative motion and a non-

conservative map. Deterministic chaos typically requires a dissipative map, along with 

one positive Lyapunov exponent 0i  , and generates fragmentation of the phase-space 

and the onset of strange attractors in the limit 1n  . 

All these considerations point out that the Lyapunov exponents for any given map 

determine the stability attributes of its trajectory.  

4. Multifractal geometry as analog of classical Thermodynamics 

Although the thermodynamic formalism of multifractal structures is not new, we briefly 

introduce the topic here to make the paper self-contained and accessible to a large 

audience. 



7 | P a g e  

 

A remarkable property of non-invertible maps of the type (2) is that, when 1n  , 

consecutive iterations (2)

1 1( ) ( ) ...n n nz f z f z     produce a partition of the phase-space 

in nN  disjoint intervals of relative lengths i ir l L  , where L  is the span of the interval 

min max[ , ]z z [1, 4]. In geometric terms, it is customary to refer to this partition as a 

multifractal set. In the context of multifractal sets, a key concept is the generating 

function defined as [4, 6] 

 ( )

1

( )
nN

q q

i i

i

q p r 



   (12) 

subject to the normalization condition 

 
1

1
nN

i

i

p


  (13) 

Here, ip  is the relative frequency with which the iterated map falls in the thi  interval of 

the phase space, while q  and ( )q  are continuous scaling exponents ( q    ). It can 

be shown that the generating function (12) stays invariant to interval rescaling and 

converges to unity if (and only if) [1, 4, 6]  

 ( ) 1 ( ) (1 ) qq q q D      (14) 

where qD  labels the so-called Rényi entropy (or generalized dimension) of multifractal 

geometry generated by (12).  

For an even distribution of iterates ( ip p ) and 1n  , the generating function (12) 

translates to the condition (16) below, namely [4] 
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  (16) 

A closer look at (16) suggests that the even distribution of iterates in the long-time limit 

1n   echoes the partition function of Thermodynamics. As stated in the Introduction, 

this observation is not all that surprising on account of the analogy between fully 

developed chaos and equilibrium statistical physics. One can thus formally treat (16) as 

a multifractal partition function as in 

 ( )

1

( )
nN

q

n i

i

Z r


  (17) 

By the error propagation equation (6)-(7), it is reasonable to expect that the accumulated 

error satisfies 

 exp( )n i iz n z    (18) 

Here, i  is the Lyapunov exponent for the trajectory of (2) starting from the initial 

condition iz , namely 

 ( ) '1
ln ( )n

i if z
n

   (19) 

The so-called backward map iteration starts from the whole phase space min max[ , ]z z and 

partitions it in a distribution of disjoint intervals, a process that is formally equivalent to 
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coarse graining 0f the phase space [4]. It is intuitively clear that coarse graining by 

backward iteration mirrors the error propagation equation (18), which describes the 

progressive growth of separation between nearby trajectories. As a result, setting the 

maximal propagation error to unity, and performing the identification [4] 

 ( )n

i iz r   (20) 

leads to 

 ( ) exp( )n

i ir n   (21) 

Direct substitution of (21) in (17) gives  

 
1

( ) exp( )
n

N

n i

i

Z n 


   (22) 

The multifractal partition function (22) may be alternatively expressed as a sum over 

Lyapunov exponents, as in  

 ( ) ( )exp( )nZ N n


     (23) 

where ( )N   is the number of intervals with the same exponent  . Invoking the 

correspondence between the exponent ( )q  and the free energy of a thermodynamic 

system ( )F  , where 1q T   , yields [9] 

 ( ) ( )q qF F     (24) 

Accordingly, (23) turns into 
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 ( ) ( )exp[ ( )]nZ N n F


      (25) 

or 

 , ,( ) ( )exp[ ( )]n nZ N F 


      (26) 

where 

    , ( ) ( )nF n F     (27) 

It is apparent that (26) generalizes the canonical partition function of Thermodynamics, 

by including in its expression the Lyapunov exponents   and the number of map 

iterations n . A glance at (1) and (7) shows that a vanishing   signals conservative 

dynamics, whereby the trajectory error nz  assumes a stationary value 0nz z  . This 

observation hints that, in order to cast (26) in a form more suggestive of its analogy with 

Thermodynamics, one may use the convenient transformation  

 1    (28) 

so that 0   amounts to 1  . Assuming that there is only one Lyapunov exponent and 

substituting (28) into (26) yields 

 
,

( ) exp[ ( )]n n
Z F


     (29) 

whose thermodynamic analog corresponds to 1, 1n    and is given by 
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 ,1( ) exp[ ( )]thZ Z F       (30) 

5. Non-Euclidean metric and multifractal geometry 

The goal of next two sections is to bridge the gap between multifractal geometry and the 

framework of effective field theory (EFT), with emphasis on General Relativity and the 

Standard Model of particle physics (SM). 

Let us first recall that the inherent sensitivity of geodesics to initial conditions connects 

their Lyapunov exponents ( i ) to the local Gaussian curvature ( K )  via [3, 6] 

 
i K   (31a) 

It follows from (31) that the K  represents a local measure of geodesic instability. At the 

same time, the concept of Kolmogorov entropy ( )KS  quantifies the amount of 

information lost or gained in the flow towards chaos of generic nonlinear dynamical 

systems [2-3, 6, 10]. It can be shown that KS  relates to the spectrum of Lyapunov 

exponents as in [2-3]  

 
1

log
i

K iS d


 




   (31b) 

where the integral is taken over the phase space  , whose differential measure is d . 

Taken together, (29), (31a) and (31b) hint that there is an intriguing relationship between 

the partition function of multifractal geometry and the non-Euclidean metric of General 

Relativity. In particular, the Lyapunov exponents entering (29) describe effects analogous 
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to those induced by gravitation, from which they decouple in the corresponding limit of 

flat spacetime, where 0K   together with 0i   and 1i  .  

An important point is now in order. It is known that all the points on a trajectory are 

described by the same Lyapunov exponent. This may raise a challenge to the validity of 

(31), since K  is a local and not a global attribute. One way out of this challenge is to 

replace K  in (31a) with the average curvature across the trajectory span as in 

 
1

( )K K s ds
L 


   (32) 

in which L denotes the arclength of the trajectory. 

By (6) and (7), the only setting consistent with 0i   and 0K   is .nz z const   , 

which means a stationary deviation from initial conditions. It follows from these 

considerations that conditions akin to Euclidean spacetime and equilibrium 

Thermodynamics are recovered in the asymptotic regime defined by 0i   and 1i  . 

These results can be symbolically summarized as follows 

 ,10 0 ( ) exp[ ( )]thK Z F          (33) 

Appealing to (11), one finds that (33) matches the concept of non-conservative maps 

( 0)   with the nonvanishing curvature of General Relativity. This result is consistent 

with the fact that General Relativity fails to comply with the global conservation of the 

energy-momentum tensor. Conversely, strictly conservative dynamics in the Lyapunov 
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sense ( 0)   echoes the settings of both Thermodynamics and field theory in Euclidean 

spacetime. 

Given the known analogy between Thermodynamics and Euclidean Quantum Field 

Theory (QFT) [11], we believe that these findings point to a hypothetical connection 

between QFT and General Relativity and a possible path towards unification based upon 

multifractal geometry.  

6. Multifractals and physics beyond the Standard Model 

Moving onto the EFT, we recall the expression of the effective field Lagrangian in d

spacetime dimensions [12] 

 
eff k k

k

L c O
 (34) 

where  kO  are local operators compliant with the symmetries of the theory and built 

from fields describing the low-energy sector. Proceeding by analogy with the generating 

function of multifractal analysis (12), we can write 

 
1

eff k k

keff

c O
L

    (35) 

and demand that (35) converges to unity if the mass dimensions of coefficients kc  and of 

operators kO  satisfy (14). Since the mass dimension of the Lagrangian is equal to d , one 

has 
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        (36) 

in which i  stands for the mass dimension of operator iO . Therefore, 
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Relation (37) may be mapped to (12)-(14) with the identification 
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  (38) 

in which  
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1
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  (39) 

and 

 
1

( )( )
k

k qk
i

O
r

M





  (40) 

Besides (39), we proceed with the following assumptions: 

A1) The effective Lagrangian (34) contains individual groups of terms having the 

same mass dimension l  ( )l k .  

A2) Each operator lO  is a composite containing the product 1 2 1...l lO O O O   such that 

the following generic relationship holds     
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 1 2 1( ) ( , ,..., )l ld f       (41a) 

To simplify notation, we omit below the index l  and the scaling exponent q  and write 

 ( ) ( )ld d    (41b) 

By (14) and (37)-(41) and for a given q , we obtain the expression of the generalized 

dimension of the dynamics described by (34) as in 

 
1

( ) (1 ) ( )
( ) 1

q effq q D D d
Q d

    


 (42a) 

where 

 
1

( )
( )

d
Q d

d





 (42b) 

It is instructive to note that, setting the mass dimension of the effective Lagrangian to 

equal the spacetime dimension, forces the generalized dimension (42) to also be equal to 

d , i.e. 

 ( ) ( )effd d D d d     (43) 

The Standard Model (SM) Lagrangian in four dimensional spacetime offers a 

straightforward example of (43), as the characteristic mass dimension of its interactions 

is 4SMD d  . Non-renormalizable interactions above the SM scale ( SMM  ) add high 

order terms to the effective Lagrangian as in [12] 
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k
eff SM k

k

L
L L


 


 ,    5k   (44) 

It is seen from (41), (42) and (44) that the contribution of high order terms ( 5)k   yields 

a larger overall dimension ( 4)d  , which leads in turn to a lower Rényi entropy 

( 4)effD d  . This speculative scenario hints that non-renormalizable interactions above 

the SM scale may generate self-organized critical behavior accompanied by a 

corresponding drop in entropy. 

7. Conclusions and outlook 

This tentative analysis has argued that there is an unexplored path linking multifractal 

geometry to both relativistic physics and the low-energy framework of the Standard 

Model. A thought-provoking assertion is that the partition function of multifractal 

geometry includes effects akin to classical gravity. Results also suggest that multifractal 

geometry may shed light onto the regime of non-renormalizable interactions presumed 

to occur beyond the Standard Model scale. 

Further studies are needed to substantiate, refute, or develop these findings along the 

following directions: 

1. Ref. [6] has found that the four dimensionality of classical spacetime emerges from 

the Rényi entropy of geodesic trajectories for 1 2q  , as given by 1 2 4D  . It is 

known that the familiar Hausdorff dimension 0HD D  corresponds to 0q  . Since 

1q T   by (24), the temperature analog at this value is 1T q  , indicative of 

the Planckian regime of the Big Bang singularity, where the concept of GR metric 
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likely breaks down.  As the Universe expands and cools off, the temperature drops 

and q  goes up from zero to 1
2

q  , which explains why 1 2 4D   at 1 2q  . Can this 

assertion be corroborated with additional arguments stemming from multifractal 

geometry and the transition to chaos of nonlinear dynamics? 

2. Following [17], how is the generalized dimension (42a) linked to non-integrability 

and the transition to chaos beyond the Standard Model scale? Is it conceivable that 

Dark Matter is a hidden manifestation of the Rényi entropy qD  defined in (14) and 

its dimensional condensation, as pointed out in [18]?  
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